Assignment 6

Hand in no. 3, 7 and 8 by October 24.

- 1. Identify the boundary points, interior points, interior and closure of the following sets in \mathbb{R} :
 - (a) $[1,2) \cup (2,5) \cup \{10\}.$
 - (b) $[0,1] \cap \mathbb{Q}$.
 - (c) $\bigcup_{k=1}^{\infty} (1/(k+1), 1/k).$
 - (d) $\{1, 2, 3, \dots\}$.
- 2. Identify the boundary points, interior points, interior and closure of the following sets in \mathbb{R}^2 :
 - (a) $R \equiv [0,1) \times [2,3) \cup \{0\} \times (3,5).$
 - (b) $\{(x,y): 1 < x^2 + y^2 \le 9\}.$
 - (c) $\mathbb{R}^2 \setminus \{(1,0), (1/2,0), (1/3,0), (1/4,0), \cdots \}.$
- 3. Describe the closure and interior of the following sets in C[0, 1]:
 - (a) $\{f: f(x) > -1, \forall x \in [0,1]\}.$
 - (b) $\{f: f(0) = f(1)\}.$
- 4. Let A and B be subsets of (X, d). Show that

$$\overline{A \cup B} = \overline{A} \cup \overline{B} \; .$$

Is it true that

$$\overline{A \cap B} = \overline{A} \cap \overline{B} ?$$

- 5. Show that $\overline{E} = \{x \in X : d(x, E) = 0\}$ for every non-empty $E \subset X$.
- 6. Let $E \subset (X, d)$. Show that E° is the largest open set contained in E in the sense that $G \subset E^{\circ}$ whenever $G \subset E$ is open.
- 7. Determine whether \mathbb{Z} and \mathbb{Q} are complete sets in \mathbb{R} .
- 8. Does the collection of all differentiable functions on [a, b] form a complete set in C[a, b]?
- 9. Let (X, d) be a metric space and $C_b(X)$ the vector space of all bounded, continuous functions in X. Show that it forms a complete metric space under the sup-norm.
- 10. We define a metric on \mathbb{N} , the set of all natural numbers by setting

$$d(n,m) = \left|\frac{1}{n} - \frac{1}{m}\right| \; .$$

- (a) Show that it is not a complete metric.
- (b) Describe how to make it complete by adding one new point.
- 11. Optional. Let (X, d) be a metric space. Fixing a point $p \in X$, for each x define a function

$$f_x(z) = d(z, x) - d(z, p).$$

- (a) Show that each f_x is a bounded, uniformly continuous function in X.
- (b) Show that the map $x \mapsto f_x$ is an isometric embedding of (X, d) to $C_b(X)$. In other words,

$$||f_x - f_y||_{\infty} = d(x, y), \quad \forall x, y \in X.$$

(c) Deduce from (b) the completion theorem asserting that every metric space has a completion.

This approach is much shorter than the proof given in the appendix of Chapter 3 . However, it is not so inspiring.

12. Optional. Let \mathcal{K} be the collection of all non-empty closed and bounded sets in \mathbb{R}^n . We introduce a metric called the Hausdorff metric on \mathcal{K} as follows. The set E_{ε} is defined to be the set $\{x + \varepsilon z : x \in E, |z| < 1\}$, $\varepsilon > 0$. For closed and bounded E, F, define

$$\rho_H(E,F) = \inf \left\{ \varepsilon : F \subset E_{\varepsilon}, E \subset F_{\varepsilon} \right\}$$

(a) Show that

$$E_{\varepsilon} = \{ y \in \mathbb{R}^n : d(y, E) < \varepsilon \}$$

(b) Show that

$$\rho_H(E,F) = \max\left\{\sup_{x\in E} d(x,F), \quad \sup_{y\in F} d(y,E)\right\} ,$$

where d(x, F) is the Euclidean distance from x to F.

- (c) Show that ρ_H is a metric on \mathcal{K} .
- (d) Let $\{K_n\}, K_{n+1} \subset K_n$, be a descending sequence in \mathcal{K} . Show that

$$\rho_H(K_n, K_\infty) \to 0, \quad \text{as } n \to \infty,$$

where $K_{\infty} = \bigcap_{j} K_{j} \neq \phi$.

13. Optional. In the previous problem, it is shown that the Hausdorff metric makes \mathcal{K} , the set of all non-empty closed and bounded sets in \mathbb{R}^n , a metric space. Now show that it is complete. Hint: Let $\{K_n\}$ be a Cauchy sequence in \mathcal{K} and consider the descending family $H_n = \overline{\bigcup_{j \ge n} K_j}$. Apply Problem 12(c) and show $K_n \to \bigcap_{k \ge 1} H_k$.